Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 26, 2026
-
Polyploidy and subsequent post-polyploid diploidization (PPD) are key drivers of plant genome evolution, yet their contributions to evolutionary success remain debated. Here, we analyze the Malvaceae family as an exemplary system for elucidating the evolutionary role of polyploidy and PPD in angiosperms, leveraging 11 high-quality chromosome-scale genomes from all nine subfamilies, including newly sequenced, near telomere-to-telomere assemblies from four of these subfamilies. Our findings reveal a complex reticulate paleoallopolyploidy history early in the diversification of the Malvadendrina clade, characterized by multiple rounds of species radiation punctuated by ancient allotetraploidization (Mal-β) and allodecaploidization (Mal-α) events around the Cretaceous–Paleogene (K–Pg) boundary. We further reconstruct the evolutionary dynamics of PPD and find a strong correlation between dysploidy rate and taxonomic richness of the paleopolyploid subfamilies (R^2 ≥ 0.90, P < 1e-4), supporting the “polyploidy for survival and PPD for success” hypothesis. Overall, our study provides a comprehensive reconstruction of the evolutionary history of the Malvaceae and underscores the crucial role of polyploidy–dysploidy waves in shaping plant biodiversity.more » « lessFree, publicly-accessible full text available August 12, 2026
-
Abstract Precise modulating the vertical structure of active layers to boost charge transfer is an effective way to achieve high power conversion efficiencies (PCEs) in organic solar cells (OSCs). Herein, efficient OSCs with a well‐controlled vertical structure are realized by a rapid film‐forming method combining low boiling point solvent and the sequential blade‐coating (SBC) technology. The results of grazing incident wide‐angle X‐ray scattering measurement show that the vertical component distribution is varied by changing the processing solvent. Novel characterization technique such as tilt resonant soft X‐ray scattering is used to test the vertical structure of the films, demonstrating the dichloromethane (DCM)‐processed film is truly planar heterojunction. The devices with chloroform (CF) processed upper layer show an increased mixed phase region compared to these devices with toluene (TL) or ‐DCM‐, which is beneficial for improving charge generation and achieving a superior PCE of 17.36%. Despite significant morphological varies, the DCM‐processed devices perform slightly lower PCE of 16.66%, which is the highest value in truly planar heterojunction devices, demonstrating higher morphological tolerance. This work proposes a solvent‐regulating method to optimize the vertical structure of active layers through SBC technology, and provides a practical guidance for the optimization of the active‐layer microstructure.more » « lessFree, publicly-accessible full text available January 1, 2026
-
The success of image generative models has enabled us to build methods that can edit images based on text or other user input. However, these methods are bespoke, imprecise, require additional information, or are limited to only 2D image edits. We present GeoDiffuser, a zero-shot optimization-based method that unifies common 2D and 3D image-based object editing capabilities into a single method. Our key insight is to view image editing operations as geometric transformations. We show that these transformations can be directly incorporated into the attention layers in diffusion models to implicitly perform editing operations. Our training-free optimization method uses an objective function that seeks to preserve object style but generate plausible images, for instance with accurate lighting and shadows. It also inpaints disoccluded parts of the image where the object was originally located. Given a natural image and user input, we segment the foreground object using SAM and estimate a corresponding transform which is used by our optimization approach for editing. GeoDiffuser can perform common 2D and 3D edits like object translation, 3D rotation, and removal. We present quantitative results, including a perceptual study, that shows how our approach is better than existing methods.more » « less
-
Abstract Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye‐sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi‐junction PVs. Nevertheless, it can be very time consuming to find or develop an up‐to‐date overview of the state‐of‐the‐art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley–Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state‐of‐the‐art emerging PVs.more » « less
An official website of the United States government
